6,660 research outputs found

    On the performance of a hybrid genetic algorithm in dynamic environments

    Get PDF
    The ability to track the optimum of dynamic environments is important in many practical applications. In this paper, the capability of a hybrid genetic algorithm (HGA) to track the optimum in some dynamic environments is investigated for different functional dimensions, update frequencies, and displacement strengths in different types of dynamic environments. Experimental results are reported by using the HGA and some other existing evolutionary algorithms in the literature. The results show that the HGA has better capability to track the dynamic optimum than some other existing algorithms.Comment: This paper has been submitted to Applied Mathematics and Computation on May 22, 2012 Revised version has been submitted to Applied Mathematics and Computation on March 1, 201

    A Weight-coded Evolutionary Algorithm for the Multidimensional Knapsack Problem

    Get PDF
    A revised weight-coded evolutionary algorithm (RWCEA) is proposed for solving multidimensional knapsack problems. This RWCEA uses a new decoding method and incorporates a heuristic method in initialization. Computational results show that the RWCEA performs better than a weight-coded evolutionary algorithm proposed by Raidl (1999) and to some existing benchmarks, it can yield better results than the ones reported in the OR-library.Comment: Submitted to Applied Mathematics and Computation on April 8, 201

    Controllability Analysis and Degraded Control for a Class of Hexacopters Subject to Rotor Failures

    Full text link
    This paper considers the controllability analysis and fault tolerant control problem for a class of hexacopters. It is shown that the considered hexacopter is uncontrollable when one rotor fails, even though the hexacopter is over-actuated and its controllability matrix is row full rank. According to this, a fault tolerant control strategy is proposed to control a degraded system, where the yaw states of the considered hexacopter are ignored. Theoretical analysis indicates that the degraded system is controllable if and only if the maximum lift of each rotor is greater than a certain value. The simulation and experiment results on a prototype hexacopter show the feasibility of our controllability analysis and degraded control strategy.Comment: 21 pages, 7 figures, submitted to Journal of Intelligent & Robotic System
    • …
    corecore